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SUMMARY

7%e$aw around cones ~ithaut aznizl symmetry and mouing at

wqersonie velocity is analyzed. SingwlaT points are shoum

to &in th~ around the cone if no axial symmetry w&&

l%e Tesdts of th-zanalysis are applied to the de-termination of

flow around circular cone~ at enudl angltw of attack. The

concept of a mmtical layer around the cone at wnati imzgles of

altack is irdroducedj and the correct nalu..a of the first-order

term8 of the wdimity wnynwnte are determined.

The method u8ed is applied to cones atjinite angles of attack,

and d is shown that good agreement with experimental resdt~

cam be obtained from the $r&order theory if the complete

equation for the press-we distribution is used.

INTRODUCTION

The flo-ivaround a cone having a circular cross section and
moving at supersonic speed has been determined by means
of the assumption of small disturbances or by means of
more rigorous methods that consider the e&tence of the
shocks. The Iatter methods can be applied for any Mach
number larger than unity and have been deveIoped by several
authors, at fit by assuming all the flow ~ potent-id flow
(references 1 and 2) and Iaterby tdsoconsidering the variation
of entropy due to t-hechange in mgIe of attack (referenoe 3).
By means of the deve~opment given in reference 3, values of
flow properties around circuhw cones at an angle of attack
have bem tabulated in reference 4. The method has been
extended in reference 5 to laiger angles of attack

In the method given in references 3, 4,. end 5, the flow
properties were considered cont:hmous and -were developed
in Fourier series in terms of the angle of attack; however,
the exietanceof a singularpoint at the surface of the cone was
neglected. The derivatives of the “flow properties were
obtained by Merent.iating the Fourier series term by twin,
and the terms of the series that repremmt the derivatives
were assumed to be of the same order as the c.arreeponding
terms of the integral quantities. For this reason, sn errone-
ous diatriiution of the entropy at the surface of the cone was
obtained.

k this report, the flow around the cone in the general case
is discussed, the ecist.ence of singuIar points in the flow is
proved, and a different procedure for determining the flow
around cones at smaU, but finite, anglea of attack is devel-
oped. This procedure shows the way in which the values
tabulated in reference 4 can be used if a simple correction
is introduced. The values obtained in this way me compared
with experimental results at several valuea of angle of attaok.

AT ANGLES OF ATTACK 1

SYMBOLS

polar coordinates (see fig. 1)
polar velocity component in radial direction

(along r}, referred to limiting veIocity (see
fig. 1) “

poIar velocity oomponent norrd kov, in meridian
pIane @= Constant, referred to limiting veloci~y .
(*. 1)

polar veIoc.ity component normal to meridian
plane @= Constant,,referred to limiting velocity
(fig. 1)

time
pressure
density
entropy
ratio of spec.fic heats (cJcJ

specific heat at constant pressure
specific heat at constant ~olume ..-
speed of sound
proj eotion of strearuliie on sphere ~= Constant

W5th center at center of the poIar coordinate _
symem

IocaI velocity
undisturbed velocity, referred to limiting velocitj
biting velocity (velocity for expansion in the

Vaouum)
ssmiapex angle of conical shock
‘mcliiation of axis of conical shock with respect -

to fre~stream direction
inclination of axk of conical shock with respect to

axis of body
angIe of attack

Subscripts:

1 stream conditions
a zero-order terms of Fourier series (part independ-

ent from angle of attack)
b tit-order terms of Fourier series (part propor-

tional to angle of attack)
c higher-order terms of Fourier series or quan-

tities at surface of cone
e quantities at externaI surface of vertical Iayer
s quantities for pohr coordinate system having

ask coincident with axis of conicaI shock

ISnperwh IiAC.%TX =, “LkIPe.mnfamowaromul ChcuIar O(EM atMUTIHofAUak” Lwhtmfo WT4 IW
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A pr”me is used to ciesign~tethe terms of zero order in the
power series in A13for the quantities in the neighborhood of
the meridian plane 0= m;.tyo primes-are used to designate
the factor of the term containing A6%/2in the same power
series. . .

THE FLOW FIELDFOR CONICALFLOW WITHOUT
AXIALSYMMETRY

In order to amdyze the flow field for conical flow without
axial symmetry at supersonic speeds, assume a polar co-
ordinate system (r,#,d). Call ZI, the velocity component in
the radial direction, Vathe velocity component in the direw
t.ionnormal LOr in tie meridian plane 0= Const.ant, and w
the component normal to the meridian plane (fig. 1); that is,

dr

“=z

r d$.—
“- dt

rdt9 .

‘=x ‘m $

If the flow is conicaI,

?Wr_o a?), dw
5– %=0 ==0

aP ~ aP
F= ~=o :=0

Nor these conditions Euler’s equations become

w afl,- —--.—Vnz-wz=()v. ~+5m+ ~.

w avn
—+~ % Vrvn–dcot $= oG&z+ M pa+

ZIW w ?)W 1 bp
- —+v,w+vnw cot +=0

‘VijY%@m+p sln$ a8

and the continuity equation becomes ‘

(la)

(lb)

(113]

2pvrsin $+v. sin$~+psin$~+ vmp cos$+

aw
W!$+p ~=o (2)

Because the energy in the flow is constant, the following
relations must apply:

–( )(
1 hp p ap =_ V,?&+Vntin

7:1 ;%-~z )
aw (3&)

be ‘w a

““. Axis of the PCVUPcoordhoies

Raw= I.—Thspohr mdnatesystem.
—

Combining equations (I], (2), and (3) results in

(v~ 2— Z’J+#’’)+vncot ++%
()

l–~ +

*8(’-$P%%%%+%O’O ‘4)

The entropy at any point of the flow can be expreascd as

where p aud p are the local quantities and pl and pl [he
stream quantities. Therefore,

Combiniig equations (5) with equations (l), (2), and (3)
results in the following expressions:

(6)
Equations (6) combined with equation (la) give

as 2)s
‘“‘in~w=–w% (7)

Equation (7) is general for any conical flow and defines tho
lines of constant entropy, which correspond to tlm stream=
lines. In fact, if L is the strewnline projection on tlMsphere
.giVeJ1 by ?’= Constant,
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and, from equation (7),

de() w
~ .=?).sin* (8)

At the surface of any conical body the componat of
velocity in the direction normal to the surface is zero and
the stream moves taugmtially to the body; therefore, the
entropy at the surface of the body must be constant or must
change in a dkcontinuoue way (in which case equations (7)
and (s) are not did).

THE PROPERTIES OF CONICAL FLOW WITHOUT AXLAL
SYMMETRY

In order to amalpe the properties of conical flow without
axial symmetry, consider fret a pokw coordinate system
having its axis coincident with the axis of a circtdar cone
at a small angle of attack (fig. !2) and assume that. the direc-
tion of the” undisturbed velocity VI is in the plane @=O,
O=u. In this case, t-heplane 8=0, 19=x is a.phme of sym.
metry of the flow and, in this plane,

W=o

O=#o
and

b, 2Jl), +=0-m=o%=0 ao

Therefore, equation (7) shows that in the plane 8= O, t?=r
the entropy is constant. At the eurfaee of the cone (4=xJ,
the normal component onis zero and w# O; therefore, equation
(7) shows that the entropy remains constant also along the
surface of the cone (~=+=). Only at points A and B,
(defied by 6=0, 8=r, and ~=~.) V=+41and HO; therefore,

e .0 Shock wave

/ .

eqution (7) is indeterminate. Bemuse the body is at an
angle of attaclq the axis of conical shock does not remain _.._
coincident with the direction of the velocity VI, and the
entropy in the plane 6=0 must-be different from the ent.ropy
in the plane 19=r: The entropy at the cone surface therefore
must be di&rent from the entropy at the plane 8= O, from
the entropy at the phme 6=;, or from both. In this case,
where w= Oand UZ=O,a discont-ipuity of entropy must exist
either at A or B or both points.

k order to find a relation between the value of the entropy
at the surface of the cone and the VSIUWof the entropy in
the meridian plane 6= O, 0= T, the following considerations

bon
. . . . .

can be used: In the meridian plane (@=O, 6= r), w, ~, and—ao
are zero because the plane is a plane of symmetry of the flow

.

field and, flom equation (7), ~=0. Therefore, in the plane

of symmetry in the zone outside of the @gular points A
and B,

J@
a aw
()

ae aw
3J 2iF“Z$2F (9)

For the case considered, the ~elocity component onis nega-
tive at the shock or at the Mach cone and remains negative
throughout the field, until it becomes zero at the surface of

the cone; therefore, the value of
M5’
~ tends to increase in

absolute value as $ decrease5 from the value corresponding
to the vaIue at the surface of the shock to the value at. the

atO
surface of the cone -ivhen— is negative and tenda to decreaseae

a~. .-
when — Mpositire.ao

.
e-o

D=

\

\

\

Shock wave

.5Yreadne
●

e=7r
Shoe> wav<

21 MWT- 58—0S
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Because the entropy remains constant”along each stream-
awline, the decrease of the absolute vaIue of ~ as ~ decreasea

corresponds to a departure of projection of the streamlines
on the sphere r= Constant from the pkme of symmetry; but)

a w-i-)‘fW w is of sign opposite to 3$) the projection of the

streamlines on the sphere r= Constant tends to converge
toward the plane of symmetry as ~ decreases from the value
rttthe shock to the value at the surface of the cone.

Now, with the convention used in figure 2, the component
w is negative throughout the field and is zero at 6=0 and

8= r. Therefore, ~ is negative in the zone 8=0 but is

positive in the zone L9=T,and the streamlineprojection tends
tQ converge toward the zone of point A and diverge from
the zone of point B, Because of the departure of the stream-
lines from the plane d= ~, the entropy in zone B remains
constant and, therefore, the entropy at the surface of the
cone is equal to the entropy at the meridian plane 6= r; at
point A a discontinuity of entropy exists from the value
corresponding to the plane L9=0to the larger value existing
in the plane t9=r. AU the projections of the streamlin~
converge at point A where the entropy is not single-vahwd.
Because on approaches zero near the cone, equation (8)
shows that all the streamline projections tend to become
parallel to the line += Constant in the zone near the cone
and converge at A. The value of o= in the meridian plane
0=0 cm change sign and cari be positive in the neighbor-
hood of the point A (case of large angks of attack). In this
case the righthnd side of equation (9) changes sign and
the singular point moves away from A in the meridian plane
6=0 and occuns at the other point of the meridian plane
where V. is also zero. (At the shock or at the Mach wave
tinis negative; therefore, another singular point where V.= O
must exist.) .-

It is interesting to observe that singular points must exist
in any supersonic conical flow without axial symmetry.
Considerations similar to those used for the case of circular
cones at an angle of attack can be extended to other cases,
and it can be shown that the streamlines that are tangent
to the body start from points of the shock and meet the
body at points where the component_ of velocity perpen-
dicular to the radius and tangent to the body vanishes and

(
has a positive derivative in the streamline direction equiva-

)
lent to the condition of positive ~ . Convergency of

streamlines occurs and, therefore, the points are singular at
the points where this component vanishes and has a negative
derivative in the direction tangent to the body, whiIe the
component normal tQ the body also vanishes and has, a
negative derivative in the direction normal tQ the body

(
avaequivalent to v.=0 and —
a+ )

negative .

For example, the conical body of figure 3 has two planes
of symmetry, M’ and BB’ when w and V, are zero, but at

the points BB’, $ is positive, wide at M’, it is negative.

Therefore, because ~ is negative at AA’ and BB’, the

pointe AA’ are singular points and the entropy at the surface
of the body is determined by the shock strength at the
points CC’.

.

DETERMINATIONOF THE FLOWAROUNDCIRCULARCONES
AT SMALL ANGLES OF ATTACK

In order to determine the flow around circular cones at
small angks of attack, consider a polar coordmte system,
the axis of which is coinciden~ with the body axis. AL the
surface Qf the body the velocity component u, is zero and in

the neighborhood of the body is very small; therefore, the
terms on2/aZcan be neglected with respect to unity.

If the angle of a$tack is small, the component w is also
small and the terms @/aa can also be ncgkcted. On the
basis of this approximation, in the neighborhood of the body
equation (4) can be expressed as

tn!)
2ur+v= cot *+a$+mo=o (10}

This equation permits a pmticular solution of this type
chosen from physical considerations

v?= v,.+ av,~cos f?+ ~v,a cos mfl

pm= v==+ cfvnbcos tl+~o,e cos m d

}

(11)

w=~b sfi t?+~wc cos m$

where V,a*,, V=*~,~, and ~b,, are functions only of *, aro
constant for constant values of $, and must be chosen in a
form that satisfies the boundary conditions.

Consider now a conical shock having circular cross sedion

and semiapex angle u (fig. 4). Consider tho cone inclined at
in angle 6 with respect to the undisturbed velocity with a
polar coordinate system, the axis of which is coincident with
the axis of the conical shock. If P,,, U. , and w, are the
velocity components referred to the limit’tig velocity 1‘1 in
the new coordinate system (r;, $,, L%),from the shock-~~avc
relations the followin& equations remdt:

Vr, = VI cos 8 cos u + V1 sin 6 sin u cos h

w,= — Vl sin 6 sin 8,

-t-l 1—V,,2—W,=
—pa,=—.

7+1 V1cos6sin u-lT1sin6wsucos 0, “

If 6 is assumed to be small and twins of the order of P are
neglected, these equations become

Vr,= V,casu+avlsin a Cos 8*

w,=— ?“16sin 0,
,7.

(y—l l—vJ~cos2a _
“’=-7+1 v,sin u )

-y-l
—8COSU

(
–2VI+

)

1— V12COS*u co~ ~,
7+1 VI sin’ u

(12)
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The flow behind a circubr conical shock inclined at a smsll
anglo ~with respect to the undisturbed stresm can therefore
be expressed in the form

Gr8=LYpea+8V,bcos ess
Gx8=vR=*+&Jnb*MS O*

}

(13)

~,= ~b. Si.U8,

. .where aU the terms cents.mmg an, %b, and wo SrO KOd,
that is, of the order of &

If the a.. of the conical coordinates is rotated at an @e
T of the same order se the angle 6 and terms of the order of F

are neglected, the velocity components on v., and w referred
to the new axis (fig. 4) become

(14)

where 8, the coordinate referred to the new ~, is given by

cos e=f20s es—qCOt $* SiU %3,

Equations (14) show that the flow behind a circular _
conical.shock inclined at a amcII angle 6 with respect to the
direction of the undisturbed stream md at an angle 7 with
respect to a conical body can also be expressed in the form
given in equations (II) w-here, if the angles ~ and r?are
small and the terms of the order of qz and t? are neglected,
only the terms having the subscripts a and h must, be con-
sidered. Therefore, equations (11), when the terms with
the subscript c are neglected, are valid for smaU angles of
attack (a=d—~), tmd a conical circular shock is consistent
with the solution chosen for the flow around the body. At .
the surface of the cone t-he assumption that u? is small
corresponde to the assumption that only the first-order terms
of angle of attack are considered. The conical shock is
inclined at an angle v with respect to the circular cone.

Tbia ansdysiais simiIar to the analysis of references 2 and
3. No assumption, however, has been introduced for the
entropy distribution; only the velocity components have been
considered to be in the form of equations (II), and no
limiting assumption has been introduced for the derivatives.
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In reference.3, in addition to the equations

Vr=vra+avrb Cos$

Vm=Vn~+aVnhCOBe

w=~wb sin 6
the expressions

P= Pa+apb cm e

ADVISORY COMMITTEE FOR -AERONAUTICS

(158)

(15b)

(15C)

QOa)

p=pa+~pb COS8 . (16b)

~=.&+&b COS.6 (16c)

have been used, and the derivatives of entropy, pressure,
and density have been obtained from differentiation of
equations (16). In this way a solution has been found which
gives values of entropy that are variable along the cone
surface and are constant in each meridian plane, while the
entropy actually remains constant along the cone surface
and changes in the meridian plane. An incorrect entropy
distribution has therefore been obtained at the surface of
the body.

In order h analyze in more detail the significance of equa-
tions (16) and their inconsistency with the approximation
considered in references 2 and 3, cunaider equation (7). In

the plane of symmetry 8=0 or d=r, ~=0; therefore,

&+ d’b or &-db of equation (16c) mtit remttin comt~t.
Consider now the plime 8= r and express the entropy ~

in the form

(17)

which satisfies the condition of symmetry. Because of
equation (7),

as’
W“”

and, from equations (16) and (17),

S’= s~–asb
and

a~b= —~fl

From equations (7) and (17),

However, !$=0; therefore,

A9 asf Wsf— —_
2 b~––v.sin~

or, sinca from equation (15c) w= ‘awb A@,

(18)

(19)

(20)

-.

By use of equation (2o), in the neighborhood
I?=T,

asb_2w@bd=_2awbs”
a -—VS sin $ 0. sin *

In reference 3, the term v~ws~~ has been considered every-

where to be of the order of azand has been negleckxl; hence,
?)8,
—= O and b~c= 0. However, neglecting this term is cor-Zl$ a+
rect only. when the ra~io wJvn is of an order difTerent from
l/a and, therefore, when lo,IN. hTear the surface of the

as” ~bcone, Vnapproaches zero and, therefore, the term —
b*

comes large and cannot he neglected, The exhmt of the
as”field around the cone where the term —
a+

is of the order of

a can be easily determined.”
Consider a polar coordinate system having ita axis coin-

cident with the axis of the cone, At the surface of the body
v. is zero; ~herefore, in the neighborhood of the body the
velocity component c. can be expressed in tho form

or, by use of equation (1O), in the form

Therefore, v. is of the order of a when (A*),

(21)

is of the order
of a. &this conical layer of thickness (A*) ~ of the order of

as” .
a’ a# .Mako ‘f ‘he ‘der ‘f a ‘r ‘a~er” 111‘hb ‘ayer’ ‘Vhich

as=
can be called the vorticd layer, the term —

ati also is of the

order of a because from equations (18) and (19) a% can be

as’showm to be of the same order as —.
a+

In order to inveatigak the effect of this vertical layer on
the velocity and pressure distribution at tho surface of the
cone, consider equations (2), (4), (6), and (7). If the velocity
components in the neighborhood of the meridian piano 8= z
are expressed as

A62
Vr=or’—— Vr”

2

A@z
vm=vn’—T Vn’f

‘=W’’@o-’%)

(22a)

(22b)

(22C)
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al);’–=o~’’-(i%+w”)”)Zl#

au)” 1 (
s~ra!z

–&r=vn’ sin # , )
C,’U,’’+QX’DX’’+P,’ P,’ sin ++ On’w” Cos++7

(23)

(24)

(25)

where

A —O,t’v,”—L*n’o.”+ w“= y— 1_ /2 2 (27]
a

r,’+ ‘v.’ Cot *+:*
B= – (28)

I –g

Therefore, alI the derivatives of the velocity components
of zero and fit order are affected by the entropy variation

as ~d a.~”
in the meridian plane.. The terms ~“ — are of the?)$
order of a in a layei of thickwas a near the s&face of the

cone. In this layer they change the due of ~~ of quantities

of the order of a and the pressure at the surface of the cone
of quantities ofa&~; order @/&. The only place where the

terms ~ and a+— are of zero order is near the surface of

the cone-in a Iayer-of thickness a?, where V=tends to the order
6/c& (equation (9)). Because the efkct of this vorticose
layer existing at the surface of the cone on the pressure is
of the order t9/d, it can be considered in this approxima-
tion, which neglects terms of the order of & or higher,
that across this layer the pressure distribution remains
constant, but an abrupt mriation of entropy occurs; there-
fore, in this approximation the phenomenon can be repre-
sented m in references 3 and 4, “where the entropy remains
cons.ta-nt in every meridkm plane unt.iI a vortid layer of
infinitesimal thickness is reached at the surface of the cone
across which a variation of entropy occurs from the -due
5’=+ da cos 6 to the wlue S.—c&~ that exists at the surface
of the conw Across the layer a wriation of density and
velocity components occurs and can be easfly detepined.

Let r,,, w,, S., p,, P,, ELIId acbe the quantities at the externaI
, surface of the layer (these are the quantities tabuhded in

reference 4] and r,e, w., S’., p;, md P .“be the quantities at the
surface of the cone. Because it has been shown that ...-.

P.=p. (30)
then

2 , S.–s.
u,e~+W62—vrc~—w=~=—— (31) “–--y-l a’ Cp

where S. —& is the entropy jump across the layer.
Xor,

v~=-vrn+avrh cos 6

-.
and in the pIane 6= r

‘Vra=.vrc

We=wc=o

or
Se=s.

(ur=-arr,)e=(ur=-:urb)==o+

(S=–as,)c= (J%–CYS,)==S’I (32)

Therefore, if terms of the order of c? are negkoted, equation
(31) becomes

(33)

(34)

Howemx, from equation (la), at the surface of the cone,

therefore, the vidu= of t’,~and wa can

(35)

be determined from
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equation (34) and from the tables of reference 4 where

The values u,., u,*,and w~having been determined, the values
of v, and w can be obtainsd at any part of the cone from
equations (16).

THE NUMERICALDETERM1NATIONOF THE FLOW FIELD
AROUNDCONESAT SMALL ANGLES OF ATTACK

The method presented permits the determination of the
pressure distribution around the cones with the assumption
that the terms of the order of & can...be neglected. The
pressure at any point can be obtained from the equation

(38)

where V is the IOCEJvelocity corresponding to the pressurep
and AS is the increase of entropy with mepect to the stream
conditions where PI and VI exist. From equations ‘(15),
V is found to be

V’=V,~+C?Vr; COS2fl+2av,~v,bcos L9+dw?sin’ 8 <39)

However, in equation (39) the terms of the order of a2
having the form 20,=v,Ccos me have beeu neglected (see
equations (11)). If all the terms of the orcler of & are
neglected, V becomes

V2=vra2+-2aV,=Vrb ime (40)

Equations (39) and (40) are diflkrent in ter.nmof the order
of a2; however, for finite angles.of attack good agreement is
obtained only if equation (39) in which some of the az
terms are retained is used in equation (38).

The reason for the better approximation given by equation
(39) can be understood if the magnitude of the terms con-
taining c? in the expression of V is considered. Along the
surface of the cone, aw~is given by .

aV ~b
a’wb=-- ‘-

Sul +0
(41)

For a finite value of a and a small value. of ~., a%vbgis of
the same order as av,o because sin% is aho small; therefore,

dw$ can have an effect on the velocity and pressure dis-
tribution of the same order as the term ar,av,~which is the

onIy ter~ retained in equation (40). Be~ause the term
a%vgis correct and significant, it can still be retained also
when other terms in & are neglected and, therefore, equa-
tion (39) k the expression that rnus~be used for finite angle

of attack,
(

-1For example, for a 10° cone ($,= 10°) sins~c=n

and ~
sm $

=1 for a=l.75°, which crtn be cousidercd a smnll

angle.
)

In reference 3, equation (16a) has been used in the deriva-
tion of the.method; however, the use of ~hisequation is not
necessary, ,as is brneffy shown in the following paragrapl~:

Consider a conical circular shock having the semiapex
angle u qnd inclined at an angle 6 with respect to the undis-
turbed stream. In the neighborhood of tlm phme 13=mtho
velocity components can be expressed as in equations (22)
and at the shock are given by (from equations (12))

Vr”= —aT-lsin u (43)

Wrf= 1’,8 (44)

-y-1 1— 1“1~COS*u
v=’= —-— — +

7+1 1’1 sin u

and S and S’} are given by.

.{(
S’=C8 Iog. 1+

) }
‘~ 1111’+1 [V,’ sin’ (r+ d)–om’~ +

,4

(48)

All the velocity components are referred to the limiting
velocity, and VI is the undisturbed velocity also referred to
the limiting velocity.

In the meridian plane 13=~ the entropy & is conshmt;
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therefore when w=O, from equation (la),

ac;
—=tlnr
i3#

(49)

If equation (4) is applied to the meridian pIane e=~ and
equation (21) is used, the radius of the hodograph diagram
at any value of+ der than u is given by (reference 6)

[

UP
C,f+-v.’ cot #+- -

(E)+=–
H-n $

1 –fl$

where

(50)

(51)

Therefore, at the point Y—AY in t-hemeridian pkme 6= ~,

(%’)$.A$= –(v:)$ s~ A++(%’–mr cos A~+(~)t (52)

- and

&’)$-L~ =(ra’)# (!0s A~+(v;–~)~ sin A* (53)

From equations (50) to (53), the velocity components r,’
and am’can be determined if the component w“ is known in

ad
the meridian plane 8= r. Since —

a+
is given by equation

(25), the value of w“ can be determined for any value of t.
But o,= and r,. are the quantities obtained for zero angIe of
attack at the same coordinate x of a coordinate system in
a.siswiti the conical shock, and

G“ = 2!,’—l’r=

VntJ= rnt—Pna

therefore, the entire flovi field can be determined until v.’
becomes O. The value of t for which wm’=0 corresponds to
~,+ a– ~ and, therefore, gives the value of a.

Ckmsiderationssimitar to those used for cones can be used
for the chmacteristics method presented in reference 6. In
this case the pressure at the surface of t-he body can be
obtained from the complete equations, and the vorticzd
layer must be considered in order to obtain the correct distri-
bution of entropy. The application is the same because the
entropy does not change along each streamline.

COMPARISONWITH EXPERIMENTALRESULTS

In order to have an indication of the accuracy that can be
expected from t-heli.rat-order theory, theoretical results have
been compared with some experimental resul~ amdable.
The theoretical results have been obtained by using the

.. —-

values of reference 4 for the conditions outside the vertical
layer, and tie pressure at the surface of the cone has been
determined in the following way: .“

From tables of reference 4 the value of ~/a has been deter- ‘--
mined (6/e of tables). The position * in the plane 19=r of
the conical body in the shock coordinate system is

#=+=+a–6 (54)

The due of v,= at +C+a– ~has been determined from the

(.
(a–a)

7
tables of reference 4 ;, at $ is given by us—2u-s~ .

The value of r,” has been obtained from the tabl& in shock =
coordinates

Then (~r=)cj (V~a).! and (wJC in the body coordinate sys-
tem have been obtained by means of equations (32), (34),
and (35).

From equation (36) fi’~haa been obtained (it has a negative
value), and from tables of reference 7 S=can be determined—
for example, from the value of the angle of the shock obtained
from reference 7—and

As=sa-d, (56)

The pressure has been obtarned from equation (38).
In figure 5 a comparison is presented for a cone of XC=7.5”

at 11=1.6 and four angles of attack. ‘The experimental data
are obtained from tests performed in the Iiangley 4- by 4-foot
supersonic tunnel. For comparison tha values given by
reference 4 and by linear theory are also shown. In figure 6
a comparison is presented for a cone of 4.=10° at ikf=6.86 “
and two angles of attack. The experimental data have been
obtained from tests performed at the bmgley n-inch hyper-
sonic tunnel. The agreement in both cases is good, even at
angles of attack where it viould be expected that.higher-order
tgrms would be important.

CONCLUDINGREMARKS “

The flow around cones without axial symmetry at super-
sonic telocity has been analyzed. %gula.r points which
complicate the analysis of the flow field were shown to exist
in the flow. The resuhs of t-heana@is were applied to the
determination Of the flow around circular cones at an angle
of attack. The concept of a vortica-1layer around the cone
at small angles of attack has been introduced, ~d the correct
values of the iirat+rder terms of the -reIoci& components
were determined.
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forschung,vol. 19,no. 4, 3<ay 1942,pp. 148-152.)
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